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ON AGE DEPENDENT BRANCHING PROCESSES

by

Howard Weiner

INTRODUCTION

This paper deals with asymptotic properties of various models of

age-dependent branching processes, relying heavily on Harris [3].

Part I considers cell growth in which a cell proceeds in a sequen-

tial manner through n independent states, state R with its life dis-

tribution FR, R=l,2,...,n. At the end of mitosis, the nth state, the

cell divides into similar cells, the number of which is governed by a

generating function h, independent of the time and other cells of the

.process.

Let Z(t) be the number of cells at t, and ZR(t), R=l,2,...,n,

be the number of cells in state R at t. For increasing cell popula-

tions, that is, h'(1) = m> 1, we treat the following topics, (t-4c

throughout).

(1) E[Z(t)] and Var[Z(t)]

(2) forward, backward, and total times: Given that a cell is in

the Rth state at t, to find

(a) the distribution of its time to reach the end of that state,

(b) the distribution of the time since it entered that state, and

(c) the total time it will have spent in that state, respectively.

(3) asymptotic fraction of cells in state R[s P I and the relation

between P and E[ZR(t)].



A variation of the above model treats cell growth in which the cell

proceeds from state to state according to a general semi-Markov process

until the mitotic state is completed, when division into similar cells

in accord with h occurs.

We treat the 3 state semi-Markov case in detail to obtain

(1) the equivalent life distribution G of a cell,

(2) asymptotic fraction of cells in a state,

(3) forward, backward, and total times in a state.

For the general n-state semi-Markov case, expressions for (2) and

(3) above are found, and it is shown that as h' (1) _= mJl, that the

asymptotic fraction of cells in a state approaches a simple limiting

form which agrees with a result of Smith [3].

For both the sequence of states and general semi-Markov model, the

convergence of

LZRt)]

a non-degenerate random variable, in quadratic mean is discussed.

The correlations

lim p(WR (t), WW(t)) P(WI Ws) 1
t-4 0 R

1R,S l,2,...,n, and W W a. e. Moments of W=- W, may be easily

obtained.

Part II considers the random variable N(t) = the total number of

births by t in a simple age dependent branching process for m > 1.

The following topics are treated for t large:
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(1) flN(t)] and Var[N(t)]

(2) W () r 11t)
(2) %o(t) W [t , a non-degenerate random variable, in

quadratic mean.

(3) Let Z(t) = number of cells at t.

From [.3],

z(t)
Wl(t) 4E[Z(t) -*4w1 in quadratic mean

It is shown that the correlations satisfy

lim :P(Wo(t), Wl(t)) = ,P(W ul) = 1
t-4 0

and that =W a.e.

(4) The results for E[N(t)] are checked with the corresponding

discrete case by matrix methods.

(5) For the case m < 1, N(t) -4N a.e. Moments of N may be0 0

calculated.

(6) For m=l and m < 1, moments of N(t) are discussed for both

discrete and continuous time.

Part III treats the case of two types of cells, of which only one

type may divide while the other either accumulates or is eventually

absorbed in the medium. An example of this 1.s the production of stem

cells and red blood cells from parent stem cells. Two related models

are considered, both examples of the "reducible case". For an outline

of the irreducible case, see Snow [B]. Increasing cell populations

are considered.
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A binary fission case of each model may be represented schematically

to indicate the various combinations of cell births with corresponding

probabilities, where type 2 represents the proliferating, and type I

the non-proliferating cell.

Model I

A A A

p 22pq Q

where p + q = i.

Model II

A A
p q

where p + q=.

Let Zi(t) = number of cells of type i at t, i=l,2.

Ni(t) = total number of births of type i by t.

The following topics are treated for t large:

(1) means and second moments of Zi(t), Ni(t), i=1,2.

(2) Results for the means in (1) are compared with the discrete case

by matrix methods, and a comparison is made with results of Snow (8).



) wi(t) -- • (t)-4 W in quadratic mean, i-l,2E LZi (t)]I

Woi (t) -N (t -)w0 i in quadratic mean, i=1,2,
E[N1 (t)]

(4) The limits of the pairwise correlations, as t -4m, of W'(t),

W2 (t), W01 (t), Wo2(t) are respectively equal to the corresponding

pairwise correlations among Wi, W2, Wol, W0 2 , and are all equal to

1, and W1 = W2 = %l = W0 2 a.e.
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PART I - MLTI-STATE CELLS

1.1 Sequence of States.

A cell exhibits growth and division into other cells according to

the scheme to be described.

The cell enters state 1, for which it remains a time which is a

random variable X with distribution function F1 , then proceeds to

state 2, with distribution function F2, and so on until it completes

the nth state of growth, the mitotic state, after which it divides.

The overall life distribution of the cell is

G = F1 *...*Fn

The cell divides into k other cells with probability Pk'

k=0,1,2,... each with independent, identically distributed growth

pattern as the parent cell, and independent of each other.

Define h(s) = y p5 k

k=O

Schematically:

xl x2 . x

A brief treatment of the two-state case is given in [3], Ch. 6,

sect. 26, where a formula for the limiting mitotic index, which is the

limiting fraction of cells in mitosis, is given.

As an example, certain normally proliferating cells pass through

four states to division, called the G1 , G 2, and mitotic state in

that order. Each corresponds to a certain condition of the cell and has
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a certain sensitivity to radiation. For example, the S state is the

DNA synthesizing state, and it along with the mitotic state is more sen-

sitive to radiation than either the G 1 or G 2 which are called rest-

ing states. The results of this paper,, especially part I may aid in

the computation of the fraction of cells heavily damaged by radiation.

See StohIman [91.

1.2 E[7, )),, Var[Z(t)].

To discuss cell behavior, it is convenient to introduce the gen-

erating function of cell life.

Definition. Let Z(t) denote the number of cells at time t,

starting with one cell at t = 0.

Definition. F(st) X P[Z(t) = k1s
k=O

We have 131 (Ch. 6, sect. 7) the relation

t
F(st) = s(l-G(t)) + fro h(F(s,,t-u)) dG(u)

m(t) a E[Z(t)] = 6F(sjt)l

as s=l

t
m(t) = 1-G(t) + m Jo m(t-u) dG(u)

We assume m =_ h'(1) > 1, h"(1) < co. Define a > 0 by the equation

e-au dG (u) 2:. By lemma I of the appendix, as t -4-1

00

MM fo, e-au [1-G(u) I du I e at

M fo t ue -au dG(u)
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or

- OM 10ue Gu

A further result has ([3) Ch. 6, sect. 19) for t -)w,

Z(t) - W ne at

where W is a random variable such that

2 (m+h" (i)) J e u dG(u)-l
•(w) =-

1-m e 2 au dG(u)

To find Var[Z(t)]X, note

Var[Z(t)J] 2 F(s±t) -m2 (t)s2 Is=l

and using theorem 18.1 of [3), ch. 6, we obtain, as might be expected,

2 2 2ct
Var Z(t)- a (W) no~e

1.3 Forward. backard and total times.

l.3a Total cell.

The total backward time is the distribution of time the cell has

been living until t, given that it is alive at the present time t.

Let A(x) = distribution function of the backward time. Then ([3],

Ch. 6, sect. 24)
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eo -at [1.G(t) ]dt

A(x) 0
e [l-G(t)] 

dt

We may find the forward time distribution, denoted by B(x), for

the total cell by using A(x).

Let

P (t,x) = P [cell will die by age t+xlage is now t]B

PB(t,x)= G(t+x) - G(t)

B-G(t)

We then have

;0 00 e-at [G(t+x) - G(t)]dt
B(x) P(t,x) dA(t) - .

o e-Ot [1-G(t) ]dt

Denote the total time distribution for the entire cell life by C (x).

Pc(tx) = P[cejl will die by age xjage is now t]

Pc(t,x) = t , x_> t P(tx)= 0 , t > x.

1-o"t e ax Gt d

C(x) =f P(t,x) dACt) = f [0(x) G(tYIdt

foo ~o'WIe-at [1-G(t) ]dt

Note A(x) * B(x) / C(x).
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1.3b Each state.

Given that the cell proceeds sequentially through n states before

mitosis, with corresponding distribution functions F1 , F2,...,Fn.

As before, G = FI * F2 *...* Fn and ae is such that

J eau dG(u) m

To find Aj(x), the backward time in state 1, we proceed as in

Theorem 24.1 of [3), Ch. 6.

Denote Z1 (t) = the number of cells at t in state 1.

z(t,x) = the number of cells at t in state 1 whose age
cc

is <x. Then if F1 (S,t) = X P[Z1 (t) = Jlsj
J=O

F1 (Sx,t) =I P[Z1 (t,x) = J] si
J=O

we obtain

ft

Fl (st) = [l-Fl(t)]s + F1 (t) - a(t) +ft h(Fl(s,t-u)) dG(u)

and

E[Z1 (t)] - ml(t) = 1-Fj(t) + m f ml(t-u) dG(u)

Fi(s,x,t) = [l-Fl(t)](sJ(x-t) + l-J(x-t)] + Fl(t) - G(t)

+ f h(F1 (s,x,t-u)) dG(u)
0

ij, r >O

where J(r) = 1 r >0
0, r <0

E[Zl(t,x)) =- ml(t,x) = [1-Fl(t)] J(x-t) + mf ml(x,t-u)dG(u).
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Solving for ml(t,x) and ml(t) for t large by lemma 1 of

the appendix,

mI(t,x) fxe [1-Fl(t)]dt
m1(t) (- x) ....- FCtjd

ml ~ 1 00e -a [l-Fl(t) ]dr

To find Bl(x), the forward time in state 1, we use A1 (x) as

done before.

Let PiB(tx) = P[cell will leave state 1 by age t+xfage in state

1 is t]

Fl(t+x) - Fi(t)

PIB(t, x) .1-FI(t)

B 1 c) P x) dA jt) = e O [Fl(t+x) - Fl(t)]dt

fooo PB~tl 0, e'•et [1 (t) ]tt

To obtain Cjx), the "total time" in state 1, define

Pic(t,x) = P[cell will leave state 1 by age xjage in state 1 is t].

Pic~tx) = Fl(X)-Flt

P(tx)= F1() - l -t , x> t and PIc(tx) = 0 , x < t

C0(x) =JC Pic(t'x) dAl(t)= fX et [Fl(x) - Fl(t)] dt

1 J , P c J 00e-r [l-Fl (t) ]dt

Let A2(x) be the backward time in state 2.
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Denote by Z2C(t, x) the number of cells in state 2 at time t whose

age is < x.

Since

P[X1 + >22 t; t > X1 > t-x) dF,(x1 ) dF2Cx2)
it~x t'-1

and

PEJC + X :t 1 lt , F2t

defining

F 2(s,t) = P[z 2 (t) js

F 2(s-,x,t) = IP[Zj(t,,x) = Iils

we obtain

F2(s,t) =s[F 1 (t)-F1 * F2(t)3 + 1-G(t)-[F1 (t)-F1  F2 (t)J

+ ft h(F2 (s,,t-u)) dG(u)

arid

F 2(s,x.ýt) =.s elft dF1 (x1 ) ft-x1dF2(x2 + 1Gt-ItXdlx i-d2x)

+ ft h(F2s,,x,t-u)) dG(u)

"111(t) ElZ2(t)] = rF 2 st l

m2(t,x) E[Z2(t,x)3 = 3F 2 (slx-'t)I
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Using lemma 1. of the appendix, for t -~~we find that

m2(tlx)
-;'2F ý A 2(x)

e-t[F~)-,* F2(t)Jdt +je-ctujdF 1 Cx1  0 dFCx)d

J'e -±( F 1 (t)-F 1 * F2 (t)]dt

To obtain B,,x),, the forward time in state 2, define

P23(t'x) = P~t+x > Xl+ >22 t ;# Xl < t]

P2B3 t,,x) =j ,xLi)tx dF2 X 2)

Then

B2 Px (fBt.,x)dA2 (t) = fo 0't dYC 1)Jt 1d 2(x2)]d

.0 ~ ~JOe ct F1 Ct)-F1 * F2 (t)]Idt

Similarly,. for %C2(x), the total tine in state 2, define

P20 (t,x) = P[x > k1 + >2 t ; X1 < t], x >t ;0 P20(t,'x) = 0,' t > XC.

P2 0 (tjx) = I dF 1(x QJ ½'2-2 , > t 2 t~x) = 0 , t > X

je..at Ej dFi (x1 ) j_ d (2

02(x) = 2 (t.,x)dA~t Jt X 1 dY]t
2 f o P2 C ( t) -f ,,, -at FI~ t -F , * F 2 (t )]Id t
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In general, to find A9 (x), Bk(x), and Ck(x), k >Ž 2, define

c(x) = F1 * F2 *...* Fk(x), then we use the same arguments as for

A2 (x), B2(x), C2 (x), where \-l corresponds to F1  and Fk to F2.

Thus we obtain, for k > 2foo o xf e-a [G -G1(t) G-Ott )f dGkfl (x dFk (x2 ) ]dt
f e'4 �[�_kl(t)-c(t)]dt

f Cxe -Ict [fG 
jr)G 

Jdt

Wf e.at [f t dGt ' -x'dFk(x2 d

O k x )(x 
1) f

fo ek-'1 _lct)-k(t)Jdt

It is easily shown that all of the above distributions may be

derived solely by means of generating functions following theorem 24.1

of ((13], Oh. 6), as was done above in obtaining Aj(x) and A2 (x).

Further, it is again possible to derive all of the above distri-

butions very quickly by heuristic arguments similar to one due to

.A. Fisher. See ([31, Oh. 6, sect. 24).

i.4 Asymtotic fraction of cells in each state.

As before, we consider cell growth through a sequence of states as

defined above, making the same assumptions and using the same notation.

14



Definition: PR(y) = P[cell of age y is in state R], R=1,2,...,n.

Definition: P. = asymptotic fraction of cells in state R.

For the case n = 2, P2 is obtained in [3], Ch. 6, sect. 26. In

general, P is called the mitotic index. We have
n

R-I R n
PR(y) = P[ •.Xi < y; •.Xi_ - Xi_> Y] •

i=i ±~ ~ i=l

As before, denoting Gk(x) = F, * F2 *.u.* Fk(x) and

G(x) = F1 * F2 *...* Fn we may write

SGB 1(y) - GR(y)

Py 1-G(y)

- P1(y)dA(y) f- [Go- l(Y)-GR(Y) ]e'rdy

1.5 EZIE(t)] , Var[½(t)].

We now obtain the asymptotic mean and variance of the number of

cells in each state.

Let zR(t) = number of cells in state R at t.
00

Define FR(st) = X P[ZR(t) = J]sj.
J=O

By the arguments in the previous section, we obtain

FR(st) = s[GRICt)-GR(t)] + I-G(t)-[GR

+ f h(FR(s,t-u))dG(u)

15



ýFR(Bs't)I
from. MR(t) E[ZR(t)] = Fs t~j 'and using lemma 1 of appendix

2 for t large,

foe'at [GR. 1C(t)-GRa(t) Jdt Ot at

mR(t) m w ,CtGt et net
f! te-tG)

Also, since Var[ZR(t)] = a2 F s -.[mR(t) ]2,

using the method of lemma 18.1 of [3], Oh. 6, we obtain

(h" (1)+m) joce'2 "dG(u)-l
Var[Z,(t)] ~ n -e

L 1-m 10 e dG(u)

As noted in (3], Ch. 6, sect. 18, the denominator is positive since

.'er-2at dG(t) < e-at 1G(t) = I
0 -m

From the first section of this paper,

E[Z(t)f srnMt) a m -fuc1 GeaJ
am ue-(ýadG(u)

Hence, as we may have expected, for t large,

mR(t)
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The above quantities are of little practical interest in the cases

m=l and m < 1, since it is known that the populations die out with

probability one in those cases. See [3], Ch. 6, sects. 1-14.

1.6 Cell growth by states according to a semi-Markov process.

We consider the following model. A cell evolves via states to

mitosis, but instead of proceeding sequentially from one intermediate

state to the next in a deterministic way, instead the state selection

proceeds according to a Markov chain. Specifically, given n states,

including the mitotic state (denoted by the nth state), assume there

exists an n x n irreducible positive recurrent transition prcbability

matrix P, with zero trace, giving the probabilities of transition from

one state to the next during the growth of a cell. As soon as the nth,

or mitotic state, is completed, the cell divides into r cells with

probability Pr' r-Oj,1,2,... each with a growth pattern independent

and identically distributed as the parent cell, and independent of

each other. Define

h(s) P r s srI h'(1) =- m > 1
1 0

r=O r.

The time spent in the kth state, k=l,2,...,n given that the

next transition is into state J, for J=l,2,...,n and k A J, is

a random variable 2% with non-lattice distribution function _F i

Fkj (0) = 0, dependent on the .kth and jth states, but otherwise inde-

pendent of the state of the system.

At present, thereappears to be no physical example of this process

in cell growth, but a possible interpretation is that a cell which
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evolves from state to state selects the most "accessible" state at each

transition, where "accessibility" may be considered to be determined in

accord with a Markov process.

We begin with a study of the 3-state semi-Markov model. For this

case we compute the equivalent life distribution G(t) of the cell,

the forward, backward, and total time distributions for a particular

state, and the asymptotic probability of a cell being in a given state

[asymptotic fraction of the culture in a given state]. Further, we let

u41, or equivalently, al0, for a defined by

fo1 e

and compare our results with those of Smith [7].

To generalize, for the case of n states, we compute the asympto-

tic fraction of cells in a given state as x$ O, and again compare with

Smith [7].

1.7 Three state semi-Markov model.

Let c a+b = c+d = p+q 1

p q a,b,c,d,p,q > 0

Schematically,

18



State "3" is the mitotic state in the figure. Define

0( O)= W etYdFk () k=l,2,3

kj(t) = k(y) J=1,2,3 and j / k.

1.7a Equivalent life.

A consideration of the various ways in which a cell may progress

through the mitotic state yields the following Laplace-Stieltjes trans-

form for the equivalent life distribution G.

ýG = (pb 013+ pda ýl22+ qcb J211+ qd 023)(p 031+ q 032) 2 (acý2112 )n
n=O

or

(pb $13+ Na ý•1232 qcb ý2•13+ qd $2 3)(p 031+ q 032)
0 - 1-ac 02112

1.7b Fraction of cells per state, PR.

Let

P1 = asymptotic fraction of cells in state 1

qj(y) = P~cell in state 1 at age y].

Since the equivalent age distribution of the cell, A(x), is

A(x) = fXe-at [I-G(t) ]dt

O, e-Ot [1-G(t) ]dt

we see that ([3], Ch. 6, sect. 26)

fO ql (Y)e-•dy

f [1-G(y) ]-cYdy

19



where a > 0 is defined by

fO e-aYdG(y) 
m

To compute ql(y), write

qL(y) = pP [cell in state 1 at age ylcell born into state l)

+ qP [cell in state 1 at age ylcell born into state 21,

so that

ql(y) = p (ac)n[F1 2 *F 2 1) () (y)-(FI2 *F2 1 ) (n)*(aF2+bF,) (y)]
n=O

+ qc I (ac)n((F1 2 F2 1 ) (n)*F21(y)_(F2*F21)(n) F21.(aF12+bF15)(y)]
n--O

where F(n) is the nth convolution of F13, i=1,2, and 3=l,2, Jki,

and F(0)(Q) = U (M 1 > 0

We have

(y) ea-"Ydy q1

a

where $q I(a) = fe-aYdql(y), the Laplace-Stieltjes transform of

ql(y) evaluated at a.

Taking Laplace-StieltJes transforms evaluated at a, using the

previous expression for ql(y)

20



00

$q (a) = p I (ac )n($12021) n[1-(aý'12 + b$15 )3(cr)
n=0

CO

+ q~c X (ac )%$2 ($1 2$2 1 )n[,_-Ca$ 1 2 + b$1 5 )] (ax)'

$q(a) = [1-(a$12 + b$±,)( p)][+ c j21 (a) ]
a Ia J c0 125(C" 21 (a)J

Since

1-$5a) 0 [1-.G~y)]e-C'dy=-r-]

=10 a m

qa l-W[-a1 2 +b ý19(a)][ p +qý,a

P, a all;]7)A1 a)

For comparison with r 1 to be defined, we express V$G in terms

"of $j , i=d,2,3, J=1,2,~3, i/ J. Then

[1-(a$12+b$13) ()*+ q~c$ 2 (a)]

1-ac$12 (a)$21(a)- (rb$1 5(a) +Aa$15(a)$23(a)+qcbA21 (a)$13 (a) +qd$23(a))

(PO$31 (a) +q$3 2 (a))

1.7c Comparison with a result of Smith.

To compare this with a result by Smith 171,P we compute
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where R1 (y) is the recurrence time distribution of the event:

[cell branch enters state 1). That is, we follow any cell branch, or

strand, until state 1 is re-entered for the first time in order to

compute R1 . We mention that an unsolved problem is to follow all cell

branches until state 1 is re-entered for the first time among all

branches, and to compute a recurrence time distribution R(y) for this

case.

1- (a412+b$15) (a)
a

a
where

ac$9 2$2 1+ adp$12$ 3$51 + bqc$1352$21 + b~~

1- (a$1̀2+bj1 ) (a)

r1= a
l-qd4 5$5 32-(ac$1 2$ 2 1 +adP$ 1 2$ 23$ 3 1 + bqc$15$ 2$ý21+ bpi / 5 1 ) (a)

a(- dý2332)

In general, for a > 0, PI V rl, and this definition of recur-

rence time distribution R, Smith's theorem 5 [7] can not be extended

to this semi-Markov process in this way.

We may let a$0 in the expressions for P1 and r 1 .

Setting a = 0, we see that

P 1 = rl

22 I



yielding Smith's result in the limit as m•l. Further, for the case

a = 0,

f[l-G(yfldy f uda~u f ua-(u)

where

p = jiJ idFji (u) , J=1,2,3, and

ihi
3

3V= (n1ia 0, 3 ) A X i 1, :i > 0 , i=l,2,3, with the relation
i3 =

S= P P, in this case

c 0(•1.2,5)= (al,a 2,n}) (Ocg d)

It may be shown by a general theorem to follow in a later section, that

for a=0,

l 1 + '2"2 + '319 3

To complete the discussion of the 3-state semi-Markov model, we

give the backward, forward, and total time distributions of state 2.

There are computed using the previously derived formulas for the dis-

tributions in the sequence of states model and the law of conditional

probability. We sum up the backward, forward, and total time distri-

butions respectively, each corresponding to a possible path ending in

state 2, with each weighted by the asymptotic probability or frequency

of that path, given that the cell ends up in state 2. Analogous expres-

sions hold for state 1.
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1.7d Forward, backward, and total times.

Let P 2 = asymptotic fraction of cells in state 2.

Define, for n--O,l,2,...

an(Y) = pa(ca)n[F12*(F12*F21 ) (n) (y)-F 1 2 *(F 1 2*F 2 1 ) (n) *(cF 2 1 +dF23)(y) ]

so that

a (y P ellof age y is in cell born in]n) =[state 2 for nth time jstate 1

and

foan (Y) e-aYdY

fOo [l-G(y) Je-aYdy

11 cell is in Jcell born]

n Lstate 2 for nth time in state 1J

Define, for n=O,l,2,...

bn (y) _ q(ac)n[ (F1 2 *F2 1 ) (n) (y)-(F1 2 *F 2 1 ) (n) (cF2l+dF23)(Y)

so that

ctell of age y is in cell born in]
bn(Y) = 4 :t:te 2 for nth time state 2 J

and

fon (y) e'"Ydy
n CO

fYt [I-G(y) ]e"Qy dy
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r [Sacell is in tecell born1

n e2 for ntim in state2

Then

00

P2 (a&n+bn)
n=On

We then have

4Xe-ctt rF12 *cF12 *F21) (n) (t)-F 12*(F12*F21) (n) *(CF 21+dF2 3) (t) Jat

0+f 
0 e-c jf a x[F 12 *CF21 *F12 ) (n)~ (x 1)

P2 n=0 f 0 d [cF21+dF23](x])dt]
ft,-x 1x

F ct' F (n) (eF-(

10 U12 21) 12(t 1)- *CF) * (FcF 3 ) (n)~ 21+1 2)t)t

+0 fb0e±ft [fn) (1)f21)d [cF 21-IdF23)Jx)aX2 b= f, txftX1Jx)

Jc0Ceat r t[(F12 *Fal) (n) ()F2*F1 21 (n1 )f'(cF2 1+a.F2 5 ] x) ]dt

B2Cx)= L a> a 1
2 2 n_=On foc eat [F1 2*CF1 2*F21)C(n)C(t)-F 12 *(F 2+F21) (n (cF 21 +dF2 )(t)Jd~t
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b fe [(cF21+d.F23) Ct+x> (oF2,+dF )(t)Id

fo e [U~t-(CFl.+d23)t)'dt

IC f _ate (ftd[(Fl2 *Fl) (n)]( f2 x lxd~cF2l+dF2)] Cx2)lat

P2n-1 fO -cat [(1y2*F21) ()(t)-(F 12*F21) (n) *(CF 21-fdF25) Ct) ]dt

where
f1, t >0

u(t)=
0, t < 0

fX ecrt It fd[C 2 *F 2 (n) *F] x1)f i-xd cF21+dF23] Cx2)]t

P2 n=O fo ecrt [F12*(F12*F21) (n) (t)-F12*(F12*F21) (n) *( 0F2+dF2) t) ]dt

b J0 e~ C(cF21+dF ,)(x)-(cF2-idF23)CtY]dt
P2 fwe-at iu(t)-(cFul+dFaP)(t)]dt

1 'ena [f d[ (F2*F) Cu) ixf lax [cF21+dF23 ](x-2),Mt

2U nb1 f 'e-c[(Fi.2*F.21) (n) Ct)_(F21*F12)(l) *(cF 21+dF25) (t)]dtJ

We return to the discussion of the asymptotic fraction of cells -'in

a state, but this time consider the semi-lMarkov case for an arbitrary

number n of states w4hich are available to the cell in its evolution.
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1.8 n-state semi-Mariov process: PR(CI) as a41.

Theorem. Let P be an n x n irreducible transition matrix with

zero trace. Let

P k (a) = asymptotic fraction of cells in state k, k=1,2,....,n,

where

00.
a:j e-dG(u) =, G the equivalent cell life distribution.

n /00

ýk= I k foud.F kjcu)i ktz,2.po..,n, where P = (Pkj)J=l

n

k k.l satisfy k>O kl,2,...,n, L k= , and for
k=J.

S=_(rl, 3 2,...,n) , i = i P.

Then, as a$O ,

-k ( a ) - n "k ~ l 2 . . n

s=l

Proof.

rqk (Y)e-cvdYfk = "• d where

J0, [1--G(y) ] eC'•dy

qk(y) = P[cell at age y is in state k].
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Letting cx4o

Jqk (y)dy

fo I-G(y) Idy

For GI, G 2 continuous distribution functions on [0, ,) with

GI(O) = G2 (0) = 0, it is imiediate that

"fro[Gl(y)-aG * G2(y)]dy =f udG2(u)

Hence

W f (yd (r)r= 'n0,r=l n

where

na cell considered as a Markov chain hitsi cell born]l •state Ik at rth step without hittingI't ate ]
Lmitotic (nth) state 

0th step

See Chung [2],, pp. 43-44, 49.

Hence

co[l-G(y) lay n _ •

S n k=l

and

"2ttk
Pk = n

The theorem is proved.
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Two observations are in order. The quantity r1 1 k is interpreted
n

as the expected visiting time to state k before mitosis, the nth state

[2].

We write P for a = O, as

k

K k+ n~ "it

n
The quantity is then the expected time spent in states

The 'tk

other than k before returning to k.
00

The theorem holds for a countable infinity of states, if I Akk<C,
k=O

where state 0 is the mitotic state. This form for P yields

Smith's theorem 5 [7] for our model.

1.9 Convergence in quadratic mean and pairwise correlation.

To conclude Part I, we investigate the asymptotic behavior of the

random variables

WR(t) ZR Ct)

for the general semi-Markov model, which includes the sequence of

states model as a special case.

Theorem. Let m > 1, and h"(1) < w. In the semi-Markov model,

w,(t) WR , R,2,...,n,

a non-degenerate random variable, in quadratic mean.

The pairwise correlations satisfy

lim P(WR(t), W8 (t)) = p(W1 ,W8 ) = 1, R,S=I,2,...n *
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Furthermore, W = WE a.e.

Sketch of Proof. See Part II for a similar proof carried out in

complete detail. Major steps are given here.

Let GR (s,t) = P P(zR(t)=IJsj
j=0

Let P (t) = P[cell in state R at t]

Let G(t) = equivalent life distribution of the cell.

Then

GR(s~t) = s PR(t) + 1-G(t)-PH(t)

"4ot+ h (GR(sjt-u))dG(u)

By previous methods, as t -4w, since

RG (s't)
E[ZR(t)] = rs sB

E[zE Ct ) ]n et

where a satisfies

fe-'dG(u) =

'm

and

foB (u) e-CLidu

M f e-aUdG(u)
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Further

N 6~S =1

and we obtain, as shown in Part -II,

EIIZj(t)] - n R Ae2

where

h" (i) f0 00e2au do (u)
1-rn f(O0 e-2CdG(u)

Define

00 
k% Ji's2 t) = O i~z(t)=,J; ZR~t)=kjs 1 s2

Then

G R(s1,s821t) = s1P1(t) + S2PE'(t)+10C~t>.Pl~t>?R(t)

+ f hCGR(s1,s2)t..u) )dG~u)

S i n c e E Z t ) ý ) 2 G ~ l B -t

E[Z1(t)Z~Jt)] -as~2 t
1 2 I %B1 =

we obtain

2cxt

This suffices to show that

Urn P(W1(t).,w R(t)) =1
t*CO
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Define

(si. 8 tjr) X F(Z(t)=J; .zý(t+wr)=k~sis Bk
2,( 1 s2 tr , k=- 1 2

Then

G11(s11s82,t,'r) = BIs s2P11(t+r) + 1-G~t+¶)-Pli(t+'r)

+fO h (G0,(s 1,sB2,t-u,'r))dG(u)

+ B % h(GRC1,s,8Vt+,r-u,O))dG(u)

Since(t)z -9(t+T)] = a2GRs lO s Iy)T
E[ZR is1 3. 2 is =s2=1

we obtain

which suffices to show that

2lrn E[W j(t)--w. (t+'r)] 0

and hence WEt-.W, a random variable, in quadratic mean. Also

Var[FWR] = A-i > 0. by [5],l Oh. 6, sect. 19, so that WE is non-

degenerate.

That

urn P(Wl(t),WR(t)) = P(W)j)= 1

may be obtained by the methods of Part II. Since EIIW,] = 1, E[W2J = Aý,

R = W1 a.e.,j R=1,,2., ., n.
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PART I -- TOTAL NUMBER OF BIRTHS, N(t)

The basic model may be any of those previously considered, since

we will now work only with the lifetime distribution function of the

entire cell, denoted as before by G(t) = P[cell lives for age < t].

We wish to study the total number of cells born by t, denoted by

N(t). See Kendall (4], 1(5 for early results in special cases.

To facilitate computations, we introduce the following variation

on the basic model, as indicated by the figure.

type 2 tye/

ttype 2

A proliferating cell of the type considered in previous models,

denoted "type 2", with life distribution G(t), divides into other

"type 2" cells, whose number is determined by the generating function

h(s), h' (1) - m > 1. However, instead of considering that the original

cell disappears on division as before, we suppose it is replaced by one

"type 1" cell of infinite lifetime. Throughout we assume that at

t = 0 we initiate the cell growth process with one "type 2" cell.

All generating functions set up are conditioned on this fact.

2.1 m(t), Var[N(t)]

Let z 1 (t) = number of type 1 cells at t

Z2 (t) = number of type 2 cells at t
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Then Z 1 (t)+z2 Ct) = N(t) = total number of type 2 cell births by t.

mljt) =E[Z1()J,(t) t) E[Z7 ) ,mt E[N(t))

Define

G(s1,st P[Z()J z2 t=k~sijs k
1s*t j,,k=O 1(t=;Z() 12

Then

G(s1 , 2 t s(l-G(t)) + a 1 ft h(0C61s 2,-u) )dG(u)

Since

is 1 -N= = (t) and. (s2 i =2==m 2 (t),

mj~t) =aGt) + 4r mj~t-u)dG(u)

m2(t) = i-a~t) + mfo m2 (t-u)dci(u)

adding.,

m(t) = 1 + mfo m~t-u)dcf~u)

Assuming h' (1) m > 1, by lemma 1 of the appendix, for t large

I~ .) uit at O
injt) Ia e f e0 =Gu = nle

mfuea%.acu) J maf ue- dGu)
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1 at n(ml)eat at

m00 ue'U(u) 
m 21-00 ue" Uu dG(u)

00

F e du 1 at eat at

[mfoue'atdG(u) mafjue'•badG(u)

and

nlu+ n2 n0•

For h"(1) < 0, we know ([3], Ch. 6, sect. 19, 21) that

z2 (t)'2t =------ ' -W2

n2 e

a random variable, in quadratic mean. In addition, if

1 E[W2 (t)-W2 ]2 dt <.,

then W2(t) -,W2  almost surely. We prove a corresponding result for

N(t).

2.2 Convergence of Wo(t).

Theorem. If h'(1) = m > 1, h"(1) <

w0(t) = N(t)
= at -÷o Wn e

0
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a random variable, in quadratic mean.

Proof. Define-

F(S1, 2 tt I P[N~t)=J; N~t+¶r)=klsis 8k
O52pT 0< j< k 1 2

Then

F(s 13s2,t,'r = s1 s2 r[f h(F(s V~ S2 .t-U,¶') )dG~u) +fit+¶hcKce,t~e-.cu))

dG(u)+1-G(t+r )

where

K(sjt) = [w(t)=jki~
~J=1

We wish to find

M2 (t,¶-) =-E[N(t)N(t+Tr)] 62F(s1, Vs 2 ,t,'T)
6s1 6s2 j2= 1

Performing the indicated differentiations,

M2(tgr) = 1 + f~ +-~Gu + mfm~t-u)dG(u)

+ h"r~ ijM(tT-Iru)m(t-u)dG(u) + mfti2(t-uhT)dG(u)

Using the method of proof of theorem 18.1 of (5,Ch. 6, for t large',

[n0hit (:)fO e-audoCu)1 2at+ar
M2t,5T) .-2Qd( J- e

Now we can compute



lint E[2= lit1[!iFi -~ t)N(t+'r'1 + N?(t) -

lim Er[Wo(t+T)- Wo(t)1= lira i e•-- E 2• J_

t--) C t t-* o n e[t6t+ttT +t e
h"( je d0hu, 2at+a 1
-rn W2 1 + 1 - 2 e2t++ J = 0, as

1-i- o0 e-2a•ude(u) e~cta

f0O e 2 auG(u) < IfeQ acu) =-.

0 m

Hence, L2  completeness shows that

(t) = N(t) -_W

n e
0

in quadratic mean. The theorem is proved.

The first two moments of W are obtained.
0

E[W ] lira E =a
t-) [neat]

2 [?Ct 1 00t

t-co Lnoe 1 lrmf 0 0e-2a%•Gcu)

[h" (1)+m e 2a u dG(u)e-1

vartw. > 0 by theorem 19.1 of [5],
0 ) Oh. 6.

For completeness we state theorem 21.1 of [3], Ch. 6, and its

corollary, which hold here.
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Theorem. For m > 1, h"(1) < m , G not a lattice distribution, and

fE[Wo(t)-Wo]2dt <C o

then WO(t) -ý W almost surely.

Corollary. For m > 1, h"(1) < -, G' (t) = g(t) and such that

J" (g(t))Pdt <cc for some p> 1>

then W (t) -+W0 almost surely.0 0

2.3 Correlation between W and W21

We now wish to find the correlation between the random variables

Wo and W2.

Recall that

(S 1, 2 ,t) = PZl(t)=j; Z2(t 1 2
J., k=O

satisfies

G(s1 ,s 2 ,t)-s 2 (1-G(t)) + s 1  h(G(s l,s 2 ,t-u)dG(u))

Since

=- (t)G(S's 2 t)(
M2 1(2(t)= 1'2(t)] 8 8 2 1 s -l

(t) = E[Zl(t)]2 2 1(sl, 2,t)2s ISl=S2=l
•s2

M22(t) = E[Z (t)]2 = 62G(s ls 2 $t)

622
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we obtain the following integral equations.

t r t2
Mil (t) = 2mi m~~~ 1C(t-u)dG(u) + h"(1l)j 'xn1l(t-u)aa(u) + Ml(-~Gu

M2 (t) =h"(l)f 2 Ct-u)dG(u) + mfM2 t-u)dG(u)

'%L2 t) = mfm 2 Ct-u)ao(u) + h"(i)f m1 (t-u)m2Ct-u)aci(u)

+ mf tN 21 (t-u) dG(u)

The method of theorem iB.1 of C5, h. 6, yields, for t large,

h"' (1) nfo'e-2audocu) 2c

"M1,(t) - O0e a

i-mr Fe -2 cadG(u)

h11(1) n2f 0 n e2a1.i(u)
__ __ __ __ __ __ 2cxt

M t e22(t - lm 0 -2czudGI

h"t C1)n 1 n2 f,' -2CzudG(u)

M2 1 (t) - 0 0e a

l-mf&-2aTG~u)

Since N(t) =z 1(t) + z2(t)
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p~~~t) ~~E[Z 1.(t)+Z2 (-t)j Cz0(t) ]-E[z(tz()][Zt)
P~) pCZ0(t),N~t)) 2 _________________2_ 

t)___ -___7,_(t)VcE[N (t) ]-E2 Nt] (EIZ2(t ]- 2112 t

Let

J=l

then

K(sjt) =s~l-G(t) + JOhCK~e~t-u))aG~u)]

For

VM(t) E[N 2 (t)] 2 K~) we obtain

M2 (t) =2 1 ufO m(t-u)dG(u) + htt(1)jotm 2(t-u)da~u)

+ mjt Mj2t-u)dG~u)

For t large

[±t) 1-mf '0e 2adG~u) J
so that writing

pWt = M32 Ct) + M2 2 (t) - m1(thu 2 Ct) - m2(t)

ICM2Ct~rn (t) M22 (t) - m2(t))

PUtting c =_ f~ -2Cxud;u

Jim pt) -*h"(l)nln 2 c + h"'(1)nc 2

t--> 0 1-inc -1-l 2 -n 2

n0 _me_
_me o/\n 1-m
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Since we have assumed all along that G is not a lattice distribution,

we may factor out (1)C1)c -i) > 0 in the expression for p(t). See"1-mc

[3], ch. 6, sect. 19.

Thus

)(h"(2)C -i)
n2 (nl+n )" l-mc_1

p(t) 2 1-=c -
n2 (nl+n l"() ••i)2

We wish to conclude that

Cov[W(t),W2 (t)] Cov[Wo, W2 ]P(t) = - I i-1
a[W (t) ][W2(t)] c[W 04[W2 ]

Since

E[W (t)-W° ]2 o40

E[W2(t)-W2 ]2 --•0

we know that

EL"Wo(t)] -*E[W] ,
0 0

E[W 2 (t)J -E[(W 2•

Then it suffices to show that

IE[W0(t)W2(t)] - E[WoW2 ]j -40

This follows from

w (t)w 2(t)-ww 2 = w(t)wp(t) -%W2 (t) -oW (t)-WoW2

= W2(t)(Wo(t)-Wo) + Wo(W2(t)-w 2 )

We have by the Cauchy-Schwarz inequality



JE[-Wo )ý()WW2] 12 < E[r t)EI _~)Wo]2+E[Wo]E[W2(t)-W,]2-0

since

E[Wo2  < w and E[W•(t)] -*E[W] <00

Hence

p(WoW 2 ) -

Comparison of the first two previously derived moments of W

with the corresponding moments of W2  given in [53, Ch. 6, sect 1 19

shows that they are the same.

Hence

W2 = W almost surely.

2.4 m(n) in discrete case.

To check some of the results for the means m1 (t) and m2(t),

suppose we consider the corresponding discrete case, in which a cell

divides at the end of a unit interval of time.

1( liml2 .vhr
The expected value matrix M = m2m221 where

mij = E[number of cells of type j issuing from a type i cell
at its mitosis]

for J,i=l,2

mn
1 0~O

M n=(:)



1, r > 0
Let G(u) = U(u-1), where U(r) = , and define a > 0:

, r <0

e-UdG(u) e-a=

and we obtain

n onm = e .

Substituting G(u) = U(u-1) into expressions for ml(t), m2(t)

previously derived, and changing t to n, n large,

an

from continuous case

mn) +m e1)an

m 2(n) e

2 _ m-1, which checks with the matrix case, in which

an
m0 (n) ean

m',(n) - en.

2.5 m(t) for m-l•, m < 1.

Let

K(s,t) = . P[N(t)=J]sj
j--0

K(s,t) = s[(i-G(t) h(F(s,t-u))dG(u)]

m(t) = E[N(t)] 6 K(,s2t)

43



For the case m=l,

0t

ta(t) = 1 + m(t-u)+ (u)

and the system is mathematically equivalent to a renewal process. For

mild restrictions on G, such as f ' tdG(t) <0 , G(O) = 0,

t

m(t) ~00t , t large.
IoUdG(u)

See Chapter 7 of Bellman and Cooke [1].

Case m < 1.

m(t) = 1 + m fm(t-u)dG(u)

By lemma 2 of the appendix, for t-c

1
me(t) - 1-in"

We check these results for cases m=l, m < 1, by reverting to the

discrete case.

2.6 Convergence and moments of N(t)_ im <_!.

We briefly treat the case m < 1.

Theorem. Let G be a distribution function,

G(O) = 0.

For m < 1,

N(t)T N., a random variable, a.e.
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Proof. N(t)t a.e.

Since E[N(t)] = m(t) satisfies

m(t) = I + m JO m(t-u)dG(u)

m(t) as t -, by lemma 2 of the appendix.

Hence N(t) is finite a.e. for all t. After that point t for

which Z2(t) = 0 a.e.,

N(t) = N(t+¶) < - for all T > 0 a.e.

Hence N(t)t No, a random variable a.e.

E[N 0 = 1

To obtain higher moments of N we assume h (n)(1) < c for0

all n=l, 2,...

Define

00

K(s,t) = • P[N(t)=Jlsjs
J=1

From 2t
K(s,t) = s[l-G(t) +Jf h(K(st-u) )dG(u)1

we obtain for M2 (t) a E[I&(t)] the equation

M(t) = 2m(t)-i + h"(1)f m2 (t-u)dG(u) + mf (t-u)dG(u)

Claim:

m (t-u)dG(u) - 2(_,) as t-co
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Proof of claim: For 0 <7 < 1,

£ m(t-u)dG(u) 1t m (t-u)dG(U)o +tyt m (t'u)dG(u)

Since m(t)T as t,

t(t-u)dG(u) < m 2(t) [G(t) -G(ty)] -1 ( ) 2[G(t)-G(ty) ]-0

and

m 2 (t-ty)G(t) 4 m2 (t-u)dG(u) m 2(t)G(t 7 )

which suffices to establish the claim.

Hence +•t

M(t) A(t) +fM(t-u)dG(u)

where
1-di h"(1)

A (t) m + h(1) as t-*t1M (1-m) 2

and

1l+m + h"'(1) ErN 2 1
1)-rnL 1-m (-rm) 2 0

Higher moments are similarly obtained recursively, but no general

form for the generating function of N has been obtained.0

2.7 m(n) for m=l m < 1, in discrete case.

For rn=1

M=(1 0 '1= ( ) and

'1 1 ni

m(n) = n+l n for n large.

46



For m < I

1 0ii-mn n
1-m

1( l-mn n 1-
l-m m - 1-in' as n-1*o,

which checks with the continuous case.

2.8 Moments of N(t), case mi=l.

We consider the asymptotic moments of N(t) for a simple age

dependent branching process with m=l. Two theorems from Laplace

transform theory will be useful. See Widder [10].

Abelian theorem. If for some v > 0

lim m(t) = c

and

ip(s) = Je-Stde(t)

then

lim sitd(s) = c .
s540

Tauberian theorem. If m(t)t is such that

1 J(s) = eStdm(t) converges for d(s) > 0

4-



and if for some y > 0

lrm syt(s) = c
s40

then

l m-(-t) c
t---> t 7  r (+1)

Lemma. Let G be a distribution function, G(O) = 0

Let H(t)t satisfy

H(t) f(t) +fo'H(t-u)dG(u)

where

f 0udG (u) mG <C,

f(t) is bounded on every finite interval, and

lim f(t) = a.
t-*o • n

Then

lum H(t) - a
t-) . tn+l N nl'

Proof. By [3], Ch. 6, appendix, the unique solution bounded on every

finite interval is t
H(t) = f f(t-u)dM(u)

where

M(u) G C(n)(u)
n=0

Denoting the Laplace transform of a function g by g, we obtain
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H(s) = ?(s) R(s) = ?(s)

As 4s0 , a Taylor expansion to the first moment yields

lG-'(a) ~ smG

and by the Abelian theorem, as s4 O,

-(8) , ar~n+l)
n

s

I,(s) ar(n+l)
n+lmGa

and by the Thuberian theorem

lim HŽt _,=~~) a
t-*00 n+l mC-'n+2) (n+l)mG

t tat

We may now obtain asymptotic moments of N(t) for m=l.

Theorem. If m=l,

h (n) (1) <-,n-,..

f UdG(u) -m <

then
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Jim 2n-1= 2
t400) t~nI2-

1 117 31

where4 a.05, a2 3  53~ 8 iQ ' & = , and the (an) may be

obtained recursively.

Proof. Define

K(s,t) = P[N(t)=jls~

K(s.,t) = slil-O~t) + f (~.tu)Gu

Wj~t) = MW~t = 1 + fo m(t-u)dG(u)j

From Bellman and Cooke [1]i, pp. 236-239,,

lia m(t) = L_

M2(t) 2[m(t)-1l + hfl(1)f m 2(t-u)dc#(u) +f%(t-u)dG(u)

fotm2 (t..u)dG(u) = jt m 2(t-u)dG(u) +ft7m2 (t.-u)dG~u) for 0 <Cy '

Now ,~) hence i#'(t)t and M (t)t , and

m(t-u) dG (u) C m2(tltV)CG(t)-G(tV)J = o(t2)

m2 (ttI(t7 ot m 2(t-u)ac~u.) <m 2(t)oG(t~')
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so that

2(t) = A(t) + f (t-u)dG(u)

where

lim A(t) h! l)
t-4 C t2 2 2

By the lemma,

M2(t) h"1
lim 3 3 h" .
t-4 00 t3  mGG

The general result follows recursively in the same way. No

general formula for the fan] has been obtained.

Note that the result for M2 (t) differs markedly from the renewal

theory case, where h(s) = s, and with the second moment asymptotic to

t2 and the variance asymptotic to t.

2.9 Moments of N(n) in discrete case, for m=l, m < 1.

The two theorems to be given in this section are limit theorems

concerning the total number of births in discrete time for cases

m=.l and m < 1. These results are similar to those just given for

continuous time.

A cell living at time n, n=1,2,,... will devide at time n+O

into K cells with probability p K K=O,l,2,... and we let

h(s) 2 p IK , h'(1) - m, and suppose h • (1) <,k--C

for .8=1,2,... and h"(1) > 0.
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Independence as before is assumed. Each new cell will divide in

accord with h at time (n+l) + 0.

Let N(n) be the total number of births by time n, n=l,2,...

starting with one cell at time 0.

Define

K(s,n) = P[N(n)=J]sj , n=l,2,...
J=1

By taing Gu) (1, u > 1
By taking G(U) = u1 in the equation in continuous

1O, u<lI

time t, t > 1

j~t

K(s,t) = s[1-G(t) + fih(K(s~t-u))dG(u)]

and setting t=n+l, we obtain

K(s,n+l) = s h(K(s,n))

We proceed to cases m=l and m < 1.

To treat the case xe=l, we need the following particular case of

the lemma of Part 1I applied to discrete time.

Corollary 1. Let ft be a function on the positive integers

satisfying, for K-*, n=l,2,..., and a > 0 and

f(K+l) = g(K) + f(K)

lim -K) = a.
K-4 K

Then, as K-*

ti (x) alim il= -
K--1• 1 n

52



Theorem 1. Let

E[N(n)] = M(n)

E[Nr(n)] = Mr(n) , r=2,5,...

Then if m=l, we have

M(n) = n

and
M (n) _r-

rr =V ar [h" (I) 1 -lim r

n-4o n

where the (a are the als in the analogous continuous timerr=2

theorem for N(t), m=l.

Proof sketch. From K(s,n+l) = sh(K(s,n)), since

ýK(s,n) j =M~n),

6s I s=l

M(n+l) = l + M(n) , m(l) = 1

Hence

M(n) = n

M2 (n+l) = 2 M(n) + h"(1) 12(n) + M2 ( n)

By the lemma, since N(n)f implies dt(n)t implies b(n)f

M2(n) h"(l)
lira = k=l,2, s
n--o n3 3

Continuing in this recursive manner, the result may be established.

The results for the case m < 1 are essentially identical with

those for the continuous case.
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Theorem 2. If m < l, as n-*o,

M(n) -
1-rn

M (n) -4b r=2,5 ,...r r

where the <Cbr >r=2 are the same as in the continuous case,r m < 1.

Proof. From X(s,n+l) = sh(K(s,n)) ,

M(n+l) = 1 + m, M(n)

We may apply lemma 2 of the appendix for G(u) = >
10O, u <!

to obtain

M(n) -i--

M2(n+l) = 2mM(n) + h"(l)M2 (n) + mM(n)

and again applying lemma 2 of the appendix,

1(n 9 [_+ ht(1) 1
M2(n) ' 1L-M (1.m-)2 ]

and so on recursively to establish the result.
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PART III - TWO TYPES OF CELLS

3.1 Model I.

This section discusses two models for cell growth in an expanding

population involving the proliferation of two types of cells. In the

first model, a "type 1" cell has a non-lattice life distribution H,

H(o) = 0 and is incapable of proliferation. At the end of its life

period, it is absorbed. A "type 2" cell, with non-lattice distribu-

tion G, G(o) = 0 is capable of proliferation. At the end of mitosis

it gives rise to

2 clusters of "type 1" cells - with probability q

1 cluster of "type I" cells and a cluster of "type 2" cells - with

probability 2pq
2

2 clusters of "type 2" cells - with probability p

where p+q = 1, p > 0, q > 0, and a cluster of type 2 cells is a

collection of those cells, containing k cells with probability Pkl

k=Ol, ... . Define

h(s) = X •o , and h'(1) a m, h"(1) <co

Similarly, a cluster of type 1 cells contains k type 1 cells with

probability q k and define

b(s) = qks , b'(1) d

Each type of cell and cluster forms independently of the state of the

system. The cells are independent of each other. See Kendall [6].
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For h(s) = b(s) = s the process may be represented schematically

as follows

2 2p
p 2pq q

Define, given that at t=O, the process starts with one newly

born type 2 cell,

z1(t) = number of "type 1" cells at t

z2(t) = number of "type 2" cells at, t

N2 (t) = number of "type 2" cells born by t

Ni(t) = number of "type 1" cells born by t

3.2 E[Zl(t)J, EI[Z 2 (t)] •

The first moments of these quantities are obtained for large t,

and are related to the corresponding discrete time case results. A

discussion of convergence in quadratic mean indicates also the asymp-

totic second moments.

Before starting the computations, we note that the "type 2" cells

form a process which is independent of the type 1 cells as follows.
2

With probability q - 0 "type 2" cells are emitted on

division of a "type 2" cell

2pq - 1 cluster of "type 2" cells is emitted

p 2- 2 clusters of "type 2" cells are emitted.

The equivalent generating function for the number of new "type 2"

cells created on division of a "type 2" cell is
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f(r) = gCh(r))

2 2 2
where g(s) =q+ +2Pqs+ps and h(r) p r

J=0

Hence, as done in previous sections, the backward, forward, and

total time distributions and asymptotic mean and variance of the number

of "type 2" cells in a state may be computed, if the type 2 cell pro-

gresses through n states, the kth state life characterized by its dis-

tribution Fki k=l,2,...,n. Here G = F1 *--.* Fn if we deal with the

sequence of states model, and G is the equivalent life distribution

of the cell in the semi-Markov case.

Throughout, all generating functions depending on the time are con-

ditioned on the event that at t=0, the process begins with one newly

born cell of type 2 or one of type 1, as will be specified.

Define

G(SlS, = I P[Zt)= Z )=ktYt=Oi at 1 ,s•8 k
2, k=0

Gl(SlS 2 ,t) = sl[l-H(t)] + H(t)

G2 (sl,s2 ,t) = s 2 (1-G(t)) +f[q(b2CG1 (sls 2,t-u))+2Pqb(Gl(sls 2 ,t-u))

h(G2 (s 1 ,S 2 ,t-u)) + p2h2 (G2 (sl, s 2,t-u) )]dG(u)

Let

ml(t) a E[ZI(t) <) G asI Sl=S2)
Cs1 - Iss21

tG 2 (sl, s 2,t)

m2 (t) - E[Z2 (t)] = - s2 -l:S'taj
is 77S2 1

57



mlWt) = 2.df tl- H(t-u) ]dG(u) + 2pmf tm(t-u)dG(u)

or
2Pjt

ml(t) = 2qd[G(t) - G * H (t) ] + 2> m,(t-u)dG(u)

it

m2 (t) = 1-G(t) + 2pm fo m2(t-u)dG(u)

To treat the case of an expanding cell population, assume that 2pm > 1,

and we define

f: e-alld u)=1
=, 2pm '

Then, for t large, by lemma I of the appendix,

2qd fua[G(u)-(G-H)(u) ]e-aUdu at et
L fo0-an 1( eeat t

( 1-G(u) ] e-°aIdu e a t

m2 (t) 1-.0... eat a 2pm =n 2 e

2pm J ueaU dG(u) 2pmo fue-hUdG(u)

3.3 Comparison with discrete case.

We compare these results with those in the discrete case.

Let X = number of "type 2" cells emitted from a "type 2" cell on

division.

E[X] = E[XI 1 "type l" cluster, P[lit cluse"

emitted 1e1 cluster emitted] +

E[XIO "type 1" clusters emitted]

P[0 "type 1" clusters emitted]

E[X] = 2 pqm + p 22m = 2pm.
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Let Y = number of "type 1" cells emitted when a "type 2" divides.

2
E[Y] = d.2pq + 2d.q = 2qd

The expectation matrix M is

1 0

M-- 2qd 2pm)

where we assume for simplicity that H = 0, that is, a type 1 cell has

infinite life.

2qd[2x-)n'1 (2pOn)

i, s >O

Let G(t) = U(t-i) , U(s) =

Let t correspond to n, the nth step of a discrete process. Thus

the continuous case is changed to the discrete.

-a _1e 2ýp-m'

2gid

m(t) m- m(n) ~- 2p ean = qd ean
1 pn

m2(t) ~m2(n) - 1; [1- ;- le a

mr(n) 2__

;7) 2pm-1

From the matrix M,

mjn) (2pm)n = 2gd 0an
2-1Qn- I = 2pm-).

m2 (n) - (2pm)n = ean

59



mjmn) ? . The ratios check.
m2-•V 2pm-l

This leads to

3.4 Comparison with results of Snow.

Lemma. The ratio of the components of the left eigenvector cor-

responding to the largest eigenvalue of M is that of the asymptotic

ratio of the mean numbers of "type I" and '"type 2" cells in the contin-

uous case, in which H = 0 [i.e., type 1 cells have infinite life].

That is

if (a = %max (a,)

then a ni , t large

Proof.
1 0

M4 = (2qd 2pm- ' Xmax= 2pr

(a, 13)M = 2pm(a., 13)

a + 2qdP .2.

P - 2pm-l "-f

Snow [8] presumably has general results of the type in the lemma,

but for the "irreducible" case, that is, if M is now normalized to

form a transition matrix, it would be irreducible. In the case treated

Chere, the states of M do not communicate. See also [5], Ch. 5.
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3.5 EC[N(t)], E( 2(t)].

Let

BCat) = 3 PtN2 (t)=j]sJ
J=O

ft

B(st) = sfl-G(t) +f f(B(s,t-u))dG(u)]

where

f(x) = g(h(x)) , g(s) = q + s + p a and

h(x) = x. This has been done in an earlier section. For t
k = 0 O -a

large, and a : f e dG(u) =

I at atE[N2 (t) ) fro 0l e n0 2 eoe

To find E[N1 (t)], set H = 0, so that G1 (slS2 ,t) =--l, which

is equivalent to letting a type 1 cell have infinite life.

E[N1 (t)3 "{ 2pm a el et = noleOt
2.J' ue-(au,(u)

These results can be checked with the discrete case, and a lemma

like the above proved.
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3.6 Convergence in quadratic mean and asymptotic correlations.

Given h"(1) < w, 2pm > 1, we wish to show that, t-o,

z1 (Ct)
Wl(t) = W in quadratic mean

1 at 1
rle

Z2 (t)
W2(t) =z2t W

neat 2

01at 01nole

N2 (t) f

W0 2 (t) = at ' 02
n02 e

where

a: f0eaudG(u) 2pm

The computation of all new generating functions to follow assumes

that at t = 0, the process starts with one cell of type 2.

We shall let the notations G1 (sl, S2 ,t) and G2 (sl,S2 ,t) stand

for the generating functions which they stood for in the preceeding

section on two cell types.

Define

0 k

B(SlS2, t,) = IX P[ZI(t)=J; Zl(t+n)=k]slS •s
j,k=O

Then
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B(s1,s 2,t'rr 1.-G(ti-i) tqb (GjS1 ,l,t~u) )+2.pcj(G 1 (s 1,l..t-u))

hC(s1 ,si.82,1t-u,r)) + P2h 2(B(8 1-82 '7 t-u,T))]dG(u)

+f [q2b2[G1Cs 2,1l,t+T-u)) + 2pqlb(G 1Cs2 ,'l,t+T-u))h(G2 (8231,t+'r-u))

+ p 2h 2(G2(s 2 ) 1)t+¶-u))]dG(u)

Sinc~e

C)~~ ~ 2 -1s =-sJ j E[Z1(t)Z1 (t+'r)J
1a Ia 2 is2=81 =

we find, using the method in theorem 18.1 of [5), Oh. 6, that, for

large t,

2pn2 0 e 2 atmG(u) [hf (1) +PM2]

E[Z,1(t)Z1I(t+'r)] J epm ecttuGczw

Let

00

C(S1,S2 tjTr) = jtT=~ , k=O

O(s 1,s2,1tpr) = s 1sjl [-G(t+r)]I +fO t q2 2 h (C(s 1,s2,.t-u,'r))

+ p 2h 2 (C(si, ~2) t-1tTY)]dGCU)

+ 61f t+¶' [q 2÷2pqh(cf2 (t, s2,ti-'-u) ))+p2h2(02(1,sr2t+¶.-u) ]dG(u)

62C(e 1,s2,t, t) E[2 t Z2t -)
as 1 Iasl s1=s 2i
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and

2f2

l-'2pm f ew Co dG (u)

Let

fl't = I P11N1(t)=j; Nl~t+¶)=kjsij8k

1>j2 1 2

fl(s1l,s2,t,¶) 1-G(t+¶r) +ft [ q2b 2 (s s) + 2pqbssh(sstut)

+ p2h2 (D(s1.,s 2 2t-u,vV ))dG(u)

+t f [%(s2 )+2pqb (s2 h(R( s2,t-'-'-u))

+ v 2h2 (R(.s2,t+r-u))]dG(u)

where

B(s.,t)=flst)

f2l(s 13es2,t)t) 8=5= =E[N1(t)N1(t+ir)]

2 2nc1 fe-2atdGcu) [h" (1)+pm2 l

E[N 1(t)N 1(t+'r)] >2P I fea jo e 2at+

Let
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H~1 ,s2 ,t') = I P[N2(t)=j; NCt2 ) 1ks 2

H~s13s 2 'Pt,r) 1= s 2 [1-G(t+t) +f[ q2 +2p h cgs S1t-,)

+ p2 h2 CH(s 1 ,s2 ,t-u,¶T))]dG(u)

+Jt.Iq +pqhK~s 't+-U))ph pt+TUJd.G(u)

where we may take

K(s,t) = IT(s.,1,t,0)

3H sits2 -t)T)k = s = 1 E [D 12 (t)N2(t+¶ )1a-1 -Z82 1 2

2rnl 2 f0te2au dG(u) [h tt (1)ipm 2]F 2f 2xt+cTr
E(N2(t)N2(t+r) -0 0-2e[ ~1-2pmf e2audG(u) J

Applying the above formulas, we see that

Erw 0t)-w201(t+T)] -*0)

E[%02(t)-w02 (t+'r)? 2-0

so that W11(t) .-->W1, W 2(t) -*W20 1101Ct) -*W0 1, W02 (t) --*>142 in quadratic

mean.
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Pairwise correlation among WWW

We explicitly indicate how to find the correlation only between

W 1  and W 2 . The other five follow similarly.

Letý

Mil. t) a E[Z2I(t)] = 2 s =52
1 2 2

2 ~ 2 G2 (s 1,syt)I
iM22t) E[Z2 (t)I = ~ 2 is=6=1

2 1 2

C2G2  %'l B2 .1 t)

M2t=2() ELZl~t)Z2% as 1  2 6s18291

Let

f0'We-2aud0(u) 
=c

2 21

M (t) 2pn 1c[h"Cl)+Nn l 2at

2 2-

2pcph"(l)+pm
2) -i

M22() . 1-2mcle2pmc

p~z1(t),z 2(t)) " 2p(1) (1)+pm 2 )

2 1-2pmc
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since we have the following lemma.

Lemma.

2pc(h"(l)+p- 2 ) - 1 > o

1-2pmc

Proof. First note, by the Cauchy-Schwarz inequality

[~-29m 00 o ]2 1
c -2*e dG(u) > [ e-edG(u) =

2pc(h"(l)+pm 2 - 1 = [ (lh" +2 m2+2Jm)-i

l-2pmc l-2pmc

It suffices to show

c[2ph"(1)+2p2 m + 2pm] > I

or to show

2ph" (11 + 2p 2m + 2pm> 1

or

h"(l) + Pn2 2+
22>

2pm

or
2

h"(1)+p +m>lm

but
2 2

h"(1) +m>m >pm , as

h"(l) is the second factorial moment of h.
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In order to show that

cov[W1 (t), w2 (t)] Cov[W.,w 2 ]p~wijt),w 2(t)) = * -l

a[Wl(t)JS[w2 (t)] a[W1]a[w2 ]

we use the same reasoning as in the section on total number of births

with one cell type.

Since E[W1 (t)-W1] 2 _)O

w2]
;[W2 (t)-W2 -40

we have

E[142(t)) .-*E[14J

It suffices to show that

IE[Wl(t)W2 (t)-W1W2 ]1 -ýO

Write

W1 (t)W2 (t)-WIW2 = W(t) [WI(t)-WI1 + W1 [W2(t)-W2 ]

By the Cauchy-Schwarz inequality,

IE[W1 (t)W2t) ]-E[WIW 2 ]12 _ E[w(t)]E[WIt)w 1 ]2 + Efw2]E[w1 t).w22_ 0

since

E[W4I] <C and E[W2(t)] -_E[w] <2 •

Hence

p(WlW 2) = 1.

All the other five correlations are 1.
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Since

E[W] E[W2] E[WOl] = E[W02] = 1

and, by the previous section,

Var[W1 ] = Var[W2J = Var(Wo0 ] = Var[W0 2 ] =

2pf0e-2aUdG(u)r[h"(l)+pm2+ m]-1

0~> 0

l-2pm f0e 2UdG(u)

wl = w2 = wOl = W0 2 a.s.

z•(n)
In the discrete case, m > 1, convergence of lim Zkrn

n-4 wn
max

a random variable in quadratic mean, is discussed in [5], Ch. 2, for

multiple types k=l,2,...,ko. Here Xmax is the largest eigenvalue

of a relevant expectation matrix.

5.7 Model II.

The second model of two cell types to be considered is similar to

the first. Using the same notation as in the previous case, the pro-

cess may be described as follows. At the end of mitosis of a type 2

cell, the progeny may be

1 cluster of "type 1" cells and 1 cluster of "type 2"

cells - with probability q

2 clusters of "type 2" cells - with probability p

p+q=l.
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In case h(s) = s, b(s) = s, we may represent the process

schematically as

q p

5.8 E[Z1(t)], E[Z2(t)].

Let

Gi t~ - P[Z 1  (t)=jZt-k' type Is j kS
-'2t jlk=O t)J Z2' lat t=O12

Then

Gjs1 , s2,t) = s1[l-H(t)] + Hi(t)

G 2(s1,s2,t) = s52 1-G(t)]+1[h(2B,2tu)

+ qib(G 1(s1,s 2,t-u))h(G2(s1 y,s,t-u))ldG(u)

Assuming an expanding cell population, or m(p+l) > 1,

mjt - [ cdf[ G(u)- *H (u) Ie =du1 eat=net

[ f o 0: ; , e a u

mo---1-t)l- l e at in eat

where a satisfies f endG(u) 1 ads
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AllA.- =M/--

m(p+1)jo ue-'UdG(u)

3.9 Comparison with discrete case.

Checking with the discrete case as before, we obtain

qd m(p+l)

11 0

[qfm(p+') ]n-l ]
m(p+1)-a [m(p+ f)

and

mro(n)

for both the discrete matrix case and the "discretized" continuous case.

We thus obtain

Lemma. If

) 3)(c) m m(p+1)(a, •)

then

d a em(t)
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5. 10 E [N1 (t)J E'[N 2 (t).

Let

B(s~t) = P[N2(t)=Jlj i
,1=0

B(s,t) = s[J..G(t) +f0 [ph 2(B(s,t-u))+qh(B(s,t-.u))Jd.G(u) J

E[2()3K m(P+1)a 1f0wue oldG(u)Jea oea

To find E11N1(t)J, set H=O, so that G1Cs1,s2,1t)=s1. With this

change,

and

[gp+) g u) atE[NI~~t)] M(~)Iue-c"dG~u oe

5.11 Convergence in quadratic mean and asymptotic correlations.

The arguments are as in the previous two cell type model.

Altered steps are sketched. As before, -we study W,(t), WOi(t)', i=1,2.

Define

B(S1,s2 ,t) =T P(Z1(t=j; Z,1(t-Fr)=kjsis 8k

jj~k=O 11 2
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B(s1,,s2,tjt) 1-G(t+¶)+J, ph 2(B( 1 .1es2s t-u,t)) +

"+ qb(G1(s1,1,t-u))h(B(s1 , s2 tu..ur)]IdG(u)

"+ sift+ [ph 2c(G,(s 2 Jl,t+t-u)) +

"+ qb(0 1(s2,1,t+t-u))h(G 2(se2 *L,t+T-u)) ]dG(u)

C 1 3s2 isI=s 2=1

Erz1(t)zp~t+T)] 4 ~2 Aet+arr

where

[h" (1) [ 1+p ]+2pni2]3 fowe 2audG~u

1-m(p+1) f0 &-2c'Udou)

Define

C(s 1 , 2 t,'r = Pz()jZt+)=k]s a
34=0 [Z()=;Z2tT 1 2.-

C(a1,a, otgr) = s 1 s82 [1-G(trr) ] +fo r[h 2(C~sa1,a 2 ' t-uw))

+ qh(C(s.1,s2,t-u'Tr)) ]dG(u)

+ slf [+ ph 2(G~l -s2,t+T-u3) + qh(G(1,s23 1t+r-u)) jdG(u)

E[Z2(t)25L-r-f i 2Aatc
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Define

D(s1, 2 tr = kl~j>0 1  N1(t+'T)=klsfjs k

f~s 1 1as2 ,0t,,r) = -G(t+'r)+fJrotC[h D(s 1 -1s 2 )t-u,'r))

+ qb(s 1Bs2)h(D(sý,S 2,It-u,¶r)) ]dG(u)

+ft+* [qb (s 2)h(fl(s 231,t+.ru,,o))+ph 2 CD(s 2 ,l,t+'r.-u,0))]dG(u)

E[N1t)N(t+')] 2 A 2at+cxr

Define

H(s1,s2,tyrT) I P[Nt)=i; N2(t1)k 2s

H~s 1,,s2,,tgr)=sls2 [lG(t-Ii)+f[ph 2(H~sj,s 2;t-u,r))+qh(H(s,,)s2,. ~) J&G(u)

t+f [phL2(H(s2 I, t+t-u, a) )+qh (H(s2,1,tI-r-, a)

E[N2(t)N2(t+¶T)J 2 Ae2ctt+cx

These results suffice to show that

4 ,W(t- W1 (t+,r)]1 -.,0 i=1,2

E wi it)- ~i(tT)12 -. 0 1=1,2

so that Wi1(t) -->W1 and W01 (t) -4W0 ,j 1=1,2,, in quadratic mean.
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The results also yield that the limiting pairwise correlations

among W1 (t), WI2 (t), W0 1(t), and W0 2 (t) approach 1 as t-*co, since

we have

Lemma.

A-i = -1)[l+•] + -1 > 0l-m(P+1)C

where

Se-2cudG(u)

Proof.

c > Efe Udofe)]2 [=m(p-'l) "

It suffices to show

[h" (1) [l+p] + 2pm 2 + M(p+1II 1 2 > 0

or

h"(1) + m > m2 (p +l)
p+l

but
22 2•

h"(1) + m > mi > m 2-+-)

Since E[Wi] = E[W0 11 I i=1,2

and E[W 2 = E[W01 2 A 1=1.2

it follows that

W 1 W2 = W01 W02 a.e.
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APPENDIX

Lemma 1. Consider the equation

ft

K(t) = f(t) + mj K(t-u)dG(u)

G is a distribution function on (0, w), G(O) = 0, G is not a lattice

distribution, f is a known function bounded on every finite interval,

m > 1. Define a > 0:

fe audG(u)0' - m

Suppose f(t)e-at -- o as t -- C, and f(t)eCat is bounded and

integrable in (0, w), then

f f(u)ea•u du 1
K (t) w ,-... ec~

m fwueinu dG(u)

Lemia 2. In the equation

K(t) = f(t) + m I K(t-u)dG(u)

Suppose m < 1, and G is a distribution function, G(O) 0. G may

or may not be a lattice distribution. If

lrm f(t) = c,

then

K(t) -rnas t -*00

These lemmas are from [31, Ch. 6, appendix.
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